Hyderabad
Supranational / Intergovernmental Institutions, Private Sector, Community / Citizen Group, Research Institutes / Universities
Whole City/Administrative Region
2009 - 2013
The project aims at low-carbon power supply for public buildings and their neighbourhoods.
Hyderabad has an increasing rate of urbanization and economic growth and one of the main challenges is to provide a sustainable model for energy supply. Blackouts are common and local schools are impacted as learning conditions are negatively affected.
The SOLAR POWERED SCHOOLS PILOT-PROJECT, was initiated as one of the outcomes of the Indo-German research project “Sustainable Hyderabad”, it follows an interdisciplinary and demand-driven approach. The project aims at encouraging climate-friendly neighbourhoods and sustainable lifestyles through the use of clean energy sources, for example, the sun. Local Schools in Hyderabad have been raising funds and installing solar panels on their rooftops both as an educational effort and to address their energy needs.
Why become a Solar School ?
Hyderabad’s demand for energy continues to increase rapidly, however, the energy supply is neither reliable nor sufficient. The power deficit in the former state of Andhra Pradesh for the year 2011-2012 that has been estimated by the Central Electricity Authority of India at 12.1%. Furthermore, with the growth of the city and the increasing consumption of conventional electricity, the emission of greenhouse gases has increased. In schools, blackouts are a common occurance and both students and teachers suffer. A blackout negatively influences the learning conditions as key devices relevant for a positive learning atmosphere (e.g. computer labs and lighting) cannot be used. The schools are dependent on conventional energy from their supplier and are not able to cope with electricity cuts and the adverse environmental effects.
Installing rooftop photovoltaic (PV) systems on schools can ensure an independent energy supply, which is especially important in case of blackouts. The generated electric energy is used efficiently in the schools. Furthermore, installing a PV system on schools raises the awareness of climate and energy efficiency. As the photovoltaic technology uses the sun radiation as a renewable energy source, it has a small carbon footprint and reduces CO2 emissions for producing energy.
Another objective is to build a reliable network which enables a policy environment not just for facilitating private adoption of roof top solar photovoltaic at the state level, but for further incentivizing its usage, particularly for the social sector. This requires networking between decision makers, administrative bodies and governmental agencies responsible for the implementation of Jawaharlal Nehru National Solar Mission (JNNSM).
From an economic perspective, the aim is to create a favorable environment for investments on a small scale market and generate additional business opportunities for private stakeholders involved. Local as well as national or international enterprises active in the field of renewable energy technology can benefit from rising energy deficit, but also from rising demand.
The main project partners for Solar powered Schools are
There is also a wider circle of private and public stakeholders who support the project in various ways. The implementation took place in three schools in Hyderabad:
The administration of Solar powered Schools is divided into major areas which can be dealt with separately. This is done by developing a Memorandum of Understanding between all project partners wherein their main responsibilities are defined.
Different spheres of work are:
(1) The overall coordination of the project in Germany and India, which includes the communication of progress and results.
(2) Promoting the project and identifying suitable partner schools in combination with supporting the schools in fund-raising.
(3) The development of awareness building measures for the schools and other interested stakeholders.
(4) Nominating a local partner in India who coordinates, supervises and evaluates the local implementation and success of the project. The nominated partner should also facilitate the cooperation with local project partners.
(5) Developping a sustainable and attractive business plan and supervising the financial viability of the project .
(6) To implement the project, a partner prepares the budget in order to apply for funding and carries out the technical realization, namely engineering procurement, construction and maintenance.
(7) For the future development and sustainability of the project, up-scaling possibilities have to be evaluated and implemented.
(8) Media and public relations are an essential factor for the self-sustaining aspect of the project. I
Planning Process
The implementation and practical output of the project are broadly divided to five areas : institutional setting, economics, technical, environmental, social and educational . First of all it is important to evaluate the energy consumption of the school and to create an overview of where and how much this energy is consumed in the school area. In this context ,all options for energy saving and energy efficiency should be explored.
In consistency with the status-quo analysis and the financial capabilities, the dimensions of a suitable photovoltaic system is calculated. Furthermore an appropriate area for the photovoltaic system has to be found. The size of the available area has to be included into the calculations. The most suitable location is a roof top with southern orientation and no shading from trees or other building parts. The shading is a crucial factor, because the total capacity produced depends on the weakest (shaded) module connected in series. While evaluating different offers from solar corporations a detailed expense allocation and technical specification of all key devices and services has to be provided. This contains among other the solar modules, inverter, energy meter, grid connection or battery and also the required working time. A crucial quality measure is the Performance Ratio (PR) or fill factor of a photovoltaic system. The PR describes the effectiveness of the whole system as a ratio between the maximum obtainable power and the actual open circuit voltage. This measure should be superior to 70%. Test certificates from the government or an independent inspection authority give information about the quality and reliability of the products.
Installation and monitoring
The installation is performed by a qualified installer or electrician. Nevertheless, observing the installation process is a worthwhile investment as arising questions can be answered right away and the students and teachers get a first impression of how a photovoltaic system works in practice. After the installation is completed, a commissioning certificate and documentation of the inspection results of all devices is handed over. This project period is also well-suited to strengthen public relations work by informing the students, teachers, parents and interested neighbouring people, in order to increase their acceptance and involvement in the project.
After the installation is successfully completed, the photovoltaic system produces electricity whenever solar radiation reaches its surface. However it is important to regularly meter and control central variables of the photovoltaic system to ensure an efficient and smooth operation. This can be done manually by regularly reading the power production displayed on the inverter. Nevertheless, controlling and editing the important PV system variables is a sophisticated and time-consuming job. Furthermore the metered data is not visible and usable for a wide range of people.
A solution would be the installation of a data logger combined with a display board and a web portal. Installing a data logger simplifies the monitoring of the PV system and the detection of potential failures. With the help of a data logger all relevant variables are metered and saved regularly. Moreover a previously adjusted and installed warn message makes it easier to quickly find and correct defects within the system.
A data logger can be installed at different positions in the photovoltaic system:
Metering the important PV system variables:
Another advantage of a data logger is that the metered data can be processed right away. The regularly metered and saved data can be accessed directly via memory card, which is plugged in the data logger or sent to a defined server via DSL/Ethernet or GSM. Using a free already configured web portal, all data is automatically send there, archived, edited and visualized. The web portal allows to monitor the PV system thoroughly, regularly and effort-saving.
The acquisition costs for a photovoltaic system are high and need to be based on a sustainable finance plan. In this context it is important to engage with the different possibilities of governmental subsidies. The Government of India, namely the Ministry of New and Renewable Energy (MNRE) has embarked on the Jawaharlal Nehru National Solar Mission to encourage the growth of the renewable energy sector. The financial evaluation of the project has been analysed for both on-grid and off-grid systems in the respective schools. Still, as a Feed-in-Tariff (FIT) was not available, the focus has been on off-grid (stand-alone) systems. During the pilot project phase, a MNRE subsidy of 30% of the installation costs has been available.
Nevertheless, support programmes mostlycover a part of the project expenses and hence other options of creating a sustainable financial model have to be found. An effective public relations campagin work with a positive image of solar energy for schools provides excellent conditions for public or private sponsoring. After amortizing, the school saves money as the electricity bill has become very low and can think about up-scaling the project or using the money for social causes.
The technical realisation of PV systems has been successfully completed at three local schools. The implementation process was evaluated and accompanied by capacity building measures. Moreover, options for feasible financing without Feed-In-Tariffs (FIT) were evaluated and documented. The schools today use the new decentralised energy supply to cover blackouts, which immediately results in better learning conditions. Additionally, they have become more independent from conventional energy suppliers. The response to the pilot project was extremely positive, a first impulse was set by the pilot project to implement change and contribute to the improvement of governmental structures and efficiency of institutions, which encourage the expansion of renewable energies. Many other schools in Hyderabad have shown a willingness to adopt solar energy and it is believed by the project team, that small-scale rooftop solar systems will be widely adopted, if the technical and financial viability illustrated by the pilot project is further mobilised to raise social awareness and along with it the state initiates systematic long term policy instruments.
A significant result of the project is the growing awareness of renewable energy technologies and sustainable lifestyles against the background of climate change. The long-term monitoring of renewable technology should encourage teachers and students to participate in the maintenance of the PV system.
Associating the pilot project with research, provided the opportunity to clearly detect and understand the different challenges the schools faced in the course of implementation. The long-term growth of the sector will require mobilisation of such success cases and systematic long term government support.
The current subsidies from the central government are not conducive for long term growth as the financial incentives are limited to an unknown number of projects with no certainty of the future incentive structure. Long-term growth of the sector will require a well-structured incentive structure that takes into account not only the viability of the project but also considers the financial burden to the public from the higher solar tariff.
Apart from the much needed long term financial incentives, experiences from the project also indicate a high level of transaction cost in the overall project implementation process due to the emerging nature of the industry and lack of experience from market participants. There is a huge role and scope for public authorities to facilitate in this regards. Public agencies, such as the state nodal agencies for renewable energy development, can play a central role in raising public awareness and facilitate the interaction amongst early adopters, financiers and project developers. To enable such a process, the renewable development agencies in the city can provide a one-stop-agency service which advises potential developers on project financing, product quality and existing project developers.
Additionally, social and cultural factors, such as awareness for environmental concerns in the public and private sphere are essential as only then will the community engage in the production of renewable energy. And only then will the energy consumer be prepared to bear possible higher costs for the initial investment through direct or indirect financial support. Both those propositions were met in the described case.
This case study has shown that small-scale solar energy can contribute to clean energy production in cities. This is especially true in emerging megacities, where the accelerated growth results in a gap between energy provision and demand. Here, decentralized energy production with renewables can support the sustainable development. This requires, however, certain propositions to be met. First of all, solar energy is only an option in countries and cities that have a respective solar radiation so that an investment is sustainable in the economic sense. Also, social or cultural factors, like awareness for environmental concerns in the public and private sphere are essential, since only then the civil society engages in the production of renewable energy. And only then, the energy consumer is prepared to bear possible additional costs from e.g. subsidies. Nevertheless, the study has also shown how important it is to consider the institutional framework. Institutional factors need to be throughout analysed and taken into account for successful implementation of energy production projects.
Important aspects of knowledge-transfer:
The Map will be displayed after accepting cookie policy